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Hook length formula

• Let λ = (λ1 ≥ · · · ≥ λr ≥ 0) be a partition of N ∈ N. We also denote by λ the
Young diagram of size |λ| = N with rows of length λ1 . . . , λr .

The Young diagram λ = (6, 4, 1)

• The classical hook length formula relates the number of standard Young tableaux
of shape λ to the product of lengths of hooks.
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Hook length formula

• A standard Young tableau of shape λ is a bijection λ→ {1, . . . ,N} on the set of
boxes which is increasing in both directions.

• It can be thought as a path ∅ ⊂ λ1 ⊂ · · · ⊂ λN = λ of Young diagtrams obtained
from the empty diagram by adding one box at a time.

1

3

2 4 ∅ ⊂ ⊂ ⊂ ⊂

• The hook H(b) of a box b ∈ λ is the subset consisting of b and all boxes of λ
above b and to its right. Its cardinality is the hook length `b.

b
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Hook length formula

Theorem

(Frame, Robinson, Thrall 1953) For any partition λ of N the number f λ of Young
tableaux of shape λ is

f λ =
N!∏
b∈λ `b

.

• For example, has a hook of length 3 and two hooks of length 1. It has thus
3!/3 · 1 · 1 = 2 tableaux, namely

1
2

3 1
3

2

• f λ is the dimension of the irreducible representation of SN labeled by λ.
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Hook length formula for skew diagrams

• A skew Young diagram λ/µ is a pair µ ⊂ λ consisting of a diagram and a
subdiagram. The size of λ/µ is N = |λr µ|.

• A standard Young tableau of shape λ/µ is a bijection λr µ→ {1, . . . ,N}
increasing in both direction.

1

2 3

4

5

Alternatively, it is a path µ = µ0 ⊂ µ1 ⊂ · · · ⊂ µN = λ of embedded Young
diagrams from µ to λ such that |µi − µi−1| = 1.

• H. Naruse gave a subtraction free combinatorial formula for the number of
standard Young tableaux of skew shape in terms of hook lengths of excited
diagrams.
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Excited diagrams

• To define this notion it is better to rotate Young diagrams by 45◦.

• Let ν be a subset of λ. A box of ν is called active if its upper left and upper right
neighbours belong to λ but are not in ν.

• An elementary excitation (or ladder move) of a subset ν of a Young diagram λ is
a subset obtained by moving one active box of ν up one step.

Definition

(Kreiman 2005, Ikeda, Naruse 2009) An excited diagram of the skew diagram λ/µ is a
subset of λ obtained from µ by a sequence of elementary excitations.
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Example

The skew diagram λ/µ = (6, 6, 5, 3, 1)/(3, 1) An excited diagram of λ/µ.
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Naruse’s hook length formula

Theorem (Naruse 2014)

Let λ/µ be a skew Young diagram of size N = |λ− µ|.
The number of standard Young tableaux of shape λ/µ is

f λ/µ =
∑

ν∈E(λ/µ)

N!∏
b∈λrν `b

The summation is over the set of excited diagrams of λ/µ

• It will be convenient to define the rational numbers gλ/µ = f λ/µ/N!. Then
gλ/λ = 1 and since E (λ/∅) = {∅} we recover the classical hook length formula

gλ/∅ =
f λ/∅

N!
=

1∏
b∈λ `b

.

9 / 28



Naruse’s hook length formula

Theorem (Naruse 2014)

Let λ/µ be a skew Young diagram of size N = |λ− µ|.
The number of standard Young tableaux of shape λ/µ is

f λ/µ =
∑

ν∈E(λ/µ)

N!∏
b∈λrν `b

The summation is over the set of excited diagrams of λ/µ

• It will be convenient to define the rational numbers gλ/µ = f λ/µ/N!. Then
gλ/λ = 1 and since E (λ/∅) = {∅} we recover the classical hook length formula

gλ/∅ =
f λ/∅

N!
=

1∏
b∈λ `b

.

9 / 28



Multivariate hook formulas

• These formulae are specialization at x1 = · · · = xn−1 = 1 of identities between
rational functions in several “equivariant” variables.

• Let Ir ,n−r be the set of Young diagrams fitting in an r × (n − r) rectangle. Assign
variables x1, . . . , xn−1 to boxes of λ ∈ Ir ,n−r from left to right, the same variable is
assigned to boxes above each other. Let x(b) ∈ {x1, . . . , xn−1} be the variable
assigned to b ∈ λ.

x1
x2

x2

x3

x3

x3

x4

x4
x5

x5
x6

x7
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Multivariate hook formula

• The hook weight of b ∈ λ is

`b(x) =
∑

b′∈H(b)

x(b′) = xi + xi+1 + · · ·+ xj .

x1
x2

x2

x3

x3

x3

x4

x4
x5

x5
x6

x7

• The weight of a skew diagram λ/µ is

wλ/µ(x) =
∑

b∈λrµ
x(b) =

∑
kixi

where ki is the number of boxes in λr µ labeled by xi .
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Naruse’s multivariate hook formula

Theorem (Naruse 2014)

Let λ/µ be a skew diagram of size N.∑
µ=µ0⊂µ1⊂···⊂µN=λ

1∏N
i=1 wλ/µi (x)

=
∑

ν∈E(λ/µ)

1∏
b∈λrν `b(x)

The summation on the left is over standard Young tableaux of shape λ/µ, i.e., paths
from µ to λ such that |µi − µi−1| = 1

Example

λ = (2, 1), µ = ∅.

x1
x2
x3

1

(x1 + x2 + x3)(x1 + x3)x3
+

1

(x1 + x2 + x3)(x1 + x3)x1
=

1

x1(x1 + x2 + x3)x3
.
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Reformulation: Pieri-type recurrence relation

We can reformulate this theorem by saying that the right-hand side of

gλ/µ(x) =
∑

ν∈E(λ/µ)

1∏
b∈λrν `b(x)

is the solution of the Pieri-type recurrence relation

gλ/µ(x) =
1

wλ/µ(x)

∑
µ′→µ

gλ/µ
′
(x),

where the sum is over Young subdiagrams µ′ ⊂ λ obtained for µ by adding one box,
with initial condition

gλ/λ(x) = 1.
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Variation

The modified weight of a skew diagram λ/µ is sλ/µ(x) =
∑

ki (ki−ki+1+xi ) where ki
is the number of boxes in λr µ labeled by xi . The following result can be obtained
from Naruse’s by a change of variables.

Corollary (FSTV 2023)

Let λ/µ be a skew diagram of size N.∑
µ⊂µ1⊂···⊂µN=λ

1∏N
i=1 sλ/µ(x)

=
∑

ν∈E(λ/µ)

1∏
b∈λrν(`b(x) + 1)

Example
1

(x1 + x2 + x3 + 1)(x1 + x3 + 2)(x3 + 1)
+

1

(x1 + x2 + x3 + 1)(x1 + x3 + 2)(x1 + 1)
=

1

(x1 + 1)(x1 + x2 + x3 + 1)(x3 + 1)
.
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Next

• Equivariant Schubert calculus. This is the context where the formulae were
discovered.

• Whittaker vectors in tensor products of dual Verma modules with fundamental
modules.

• Multidimensional hypergeometric functions and 3D mirror symmetry.
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Equivariant Schubert calculus

• The torus T = U(1)n ⊂ U(n) acts on the Grassmannian X = Grr (Cn) with
isolated fixed points pλ labeled by Young diagrams λ ∈ Ir ,n−r .

• The equivariant cohomology HT (X ) of X is the free module over
HT (pt) = Z[t1, . . . , tn] with basis the Schubert classes [Xλ] = [B−pλ].

• The inclusion maps iλ : {pλ} → X of fixed points define a monomorphism

i∗ : HT (X )→ HT (XT ) = ⊕p∈XTZ[t1, . . . , tn]

of graded algebras over Z[t1, . . . , tn] with deg ti = 2.

Proposition (Okounkov 1996, Molev–Sagan 1999, Knutson–Tao 2003, Mihalcea
2005, Naruse 2014)

For all µ ⊂ λ ∈ Ir ,n−r , gλ/µ(x) = i∗µ[Xλ]/i∗λ[Xλ], xi = ti+1 − ti solves the Pieri-type
recurrence relation.
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Equivariant Schubert calculus

Proposition

For all µ ⊂ λ ∈ Ir ,n−r , gλ/µ(x) = i∗µ[Xλ]/i∗λ[Xλ], xi = ti+1 − ti solves the Pieri-type
recurrence relation.

• The recurrence relation for i∗µ[Xλ] = Cµλµ(t) follows from the Chevalley formula for
equivariant Littlewood–Richardson coefficients.

• On the other hand one has the AJS/Billey formula for i∗µ[Xλ]
(Andersen–Jantzen–Soergel 1994, Billey 1999, Kumar 2002), which can be recast
into a sum over excited diagrams.

• This generalizes to generalized flag manifolds G/P and to equivariant K -theory
and their quantum version.
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Whittaker vectors (Kostant 1978)

• Let n− ⊂ g = gln(C) be the maximal nilpotent of lower triangular matrices. It is
generated by fi = Ei+1,i , (i = 1, . . . , n− 1). Let η : n− → C be the character such
that η(fi ) = −1 for all i .

• A Whittaker vector (for the character η) in a g-module V is a vector v ∈ V such
that

xv = η(x)v for all x ∈ n−.

• The space Wh(V ) of Whittaker vectors in V is a module over the centre
Z = Z (Ug) of the universal enveloping algebra of g.

• If v ∈Wh(V ) r {0} and zv = χ(z)v for all z ∈ Z for some character χ : Z → C
of the commutative algebra Z , then one says that v has infinitesimal character χ.

18 / 28



Whittaker vectors (Kostant 1978)

• Let n− ⊂ g = gln(C) be the maximal nilpotent of lower triangular matrices. It is
generated by fi = Ei+1,i , (i = 1, . . . , n− 1). Let η : n− → C be the character such
that η(fi ) = −1 for all i .

• A Whittaker vector (for the character η) in a g-module V is a vector v ∈ V such
that

xv = η(x)v for all x ∈ n−.

• The space Wh(V ) of Whittaker vectors in V is a module over the centre
Z = Z (Ug) of the universal enveloping algebra of g.

• If v ∈Wh(V ) r {0} and zv = χ(z)v for all z ∈ Z for some character χ : Z → C
of the commutative algebra Z , then one says that v has infinitesimal character χ.

18 / 28



Whittaker vectors (Kostant 1978)

• Let n− ⊂ g = gln(C) be the maximal nilpotent of lower triangular matrices. It is
generated by fi = Ei+1,i , (i = 1, . . . , n− 1). Let η : n− → C be the character such
that η(fi ) = −1 for all i .

• A Whittaker vector (for the character η) in a g-module V is a vector v ∈ V such
that

xv = η(x)v for all x ∈ n−.

• The space Wh(V ) of Whittaker vectors in V is a module over the centre
Z = Z (Ug) of the universal enveloping algebra of g.

• If v ∈Wh(V ) r {0} and zv = χ(z)v for all z ∈ Z for some character χ : Z → C
of the commutative algebra Z , then one says that v has infinitesimal character χ.

18 / 28



Whittaker vectors (Kostant 1978)

• Let n− ⊂ g = gln(C) be the maximal nilpotent of lower triangular matrices. It is
generated by fi = Ei+1,i , (i = 1, . . . , n− 1). Let η : n− → C be the character such
that η(fi ) = −1 for all i .

• A Whittaker vector (for the character η) in a g-module V is a vector v ∈ V such
that

xv = η(x)v for all x ∈ n−.

• The space Wh(V ) of Whittaker vectors in V is a module over the centre
Z = Z (Ug) of the universal enveloping algebra of g.

• If v ∈Wh(V ) r {0} and zv = χ(z)v for all z ∈ Z for some character χ : Z → C
of the commutative algebra Z , then one says that v has infinitesimal character χ.

18 / 28



Example: Whittaker vectors in dual Verma modules

• Let g = n− ⊕ h⊕ n+ be the Gauss decomposition, ρ ∈ h∗ the half-sum of positive
roots.

• The Verma module Mt of highest weight t ∈ h∗ ∼= Cn is generated by a vector vt
of weight t killed by n+ and is free over U(n−).

Lemma

The space of Whittaker vectors in the dual module M ′t−ρ = HomC(Mt−ρ,C) is
1-dimensional, spanned by ψ such that

ψ(fi1 · · · fikvt−ρ) = 1 for all 1 ≤ i1, . . . , ik ≤ n − 1.

• The centre Z acts on M ′t−ρ via a character χ(t) : Z → C. In particular ψ has
infinitesimal character χ(t).

19 / 28
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Whittaker vectors in tensor modules

• Let Ur =
∧r Cn be the r -th fundamental module of g = gln, (r = 1, . . . , n− 1). It

has a basis uµ = ei1 ∧ · · · ∧ eir in 1-1 correspondence with Young diagrams µ ∈ Ir ,n
fitting in a r × (n − r)-rectangle. Let wt(µ) ∈ h∗ denote the weight of uµ.

• Example: r = 3, n = 8, uµ = e4 ∧ e6 ∧ e8, wt(µ) = (0, 0, 0, 1, 0, 1, 0, 1).

i1 i2 i3

• It follows from results of Kostant that Wh(M ′t−ρ ⊗ Ur ) has dimension
dim(Ur ) =

(n
r

)
. How does the centre Z act?

20 / 28



Whittaker vectors in tensor modules

• Let Ur =
∧r Cn be the r -th fundamental module of g = gln, (r = 1, . . . , n− 1). It

has a basis uµ = ei1 ∧ · · · ∧ eir in 1-1 correspondence with Young diagrams µ ∈ Ir ,n
fitting in a r × (n − r)-rectangle. Let wt(µ) ∈ h∗ denote the weight of uµ.

• Example: r = 3, n = 8, uµ = e4 ∧ e6 ∧ e8, wt(µ) = (0, 0, 0, 1, 0, 1, 0, 1).

i1 i2 i3

• It follows from results of Kostant that Wh(M ′t−ρ ⊗ Ur ) has dimension
dim(Ur ) =

(n
r

)
. How does the centre Z act?

20 / 28



Whittaker vectors in tensor modules

• Let Ur =
∧r Cn be the r -th fundamental module of g = gln, (r = 1, . . . , n− 1). It

has a basis uµ = ei1 ∧ · · · ∧ eir in 1-1 correspondence with Young diagrams µ ∈ Ir ,n
fitting in a r × (n − r)-rectangle. Let wt(µ) ∈ h∗ denote the weight of uµ.

• Example: r = 3, n = 8, uµ = e4 ∧ e6 ∧ e8, wt(µ) = (0, 0, 0, 1, 0, 1, 0, 1).

i1 i2 i3

• It follows from results of Kostant that Wh(M ′t−ρ ⊗ Ur ) has dimension
dim(Ur ) =

(n
r

)
. How does the centre Z act?

20 / 28



Whittaker vectors in tensor modules

Theorem (FSTV 2023)

Let t ∈ h∗ be generic and let xi = ti+1 − ti (i = 1, . . . , n− 1). For λ ∈ Ir ,n−r there is a
unique Whittaker vector βλ ∈ M ′t−ρ ⊗ Ur

∼= HomC(Mt−ρ,Ur ) such that

βλ(vt−ρ) =
∑
µ⊂λ

gλ/µ(t)uµ, gλ/µ(t) =
∑

ν∈E(λ/µ)

1∏
b∈λrν `b(x)

,

It is a simultaneaous eigenvector for the action of Z with infinitesimal character
χ(t − wt(λ)). The vectors βλ form a basis of the space of Whittaker vectors.

• Sketch of proof The condition for β to be a Whittaker vector with an infinitesimal
character can be translated into the Pieri-type recurrence relation for gλ/µ(x)
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3d mirror symmetry

• To a Nakajima quiver variety X one associates hypergeometric integrals called
vertex function V (X ) and capping operator I (X ) predicting by 3d mirror
symmetry to encode the enumerative geometry of quasi-maps (with different
boundary conditions) from P1 to the 3d mirror dual X !. (Okounkov 2015,
Aganagic–Okounkov 2017)

• To a Young diagram λ one associates a quiver and a (0-dimensional) Nakajima
variety Xλ = T ∗Repv ,w////Gv = µ−1(0)//Gv .

1 2 3 2 2 1 1

1

z1
z2

z2

z3

z3

z3

z4

z4
z5

z5
z6

z7
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3d mirror symmetry

• Thus we have a vertex function Vλ and a capping operator Iλ. Since the
cohomology of Xλ is one-dimensional one expect them to be proportional.

Theorem (FSTV 2003)

Vλ(z , κ) =
1∏

b∈λ(`b(z) + 1)
Iλ(z , κ).

• These hypergeometric integrals first appeared in the study of solutions of the
Knizhnik–Zamolodchikov equation.
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Hypergeometric integrals

• The theory of hypergeometric solutions of the Knizhnik-Zamolodchikov
(Schechtman–Varchenko 1991) provides in particular integral formulas for singular
vectors in Mt ⊗ Ur .

• For generic t ∈ h∗ and λ ∈ Ir ,n−r there is a singular vector, unique up to
normalization, of the form

χλ =
∑
µ≤λ

∑
I∈A(λ/µ)

c
λ/µ
I (t) fi1 · · · fikvt ⊗ uµ, c

λ/λ
∅ 6= 0.

The sum is over I = (i1, . . . , ik) such that wt(µ) = wt(λ) + αi1 + · · ·+ αik

• Pick any generic κ ∈ C. The coefficients are hypergeometric integrals of the form

c
λ/µ
I (t) =

∫
γ

Φλ(s, t)
1
κWI (s)

∏
dsi ,j
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Hypergeometric integrals

• The coefficients are hypergeometric integrals of the form

c
λ/µ
I (t) =

∫
γ

Φλ(s, t)
1
κWI (s)

∏
dsi ,j

• Let wt(λ) = $r −
∑n−1

i=1 kiαi Then we have ki integration variables si ,j
(j = 1, . . . , ki ) associated with the simple root αi (one integration variable for
each box of λ). Let k =

∑
ki

= |λ|. The master function is

Φλ(s, t) =
∏
(i ,j)

s
−(αi ,t)
i ,j (si ,j − 1)−(αi ,$r )

∏
(i ,j)<(i ′,j ′)

(si ,j − si ′,j ′)
(αi ,αi′ )

• The weight functions WI (s) are certain rational functions and γ ∈ Hk(C , Lκ)− is
a
∏

i=1 Ski -antiinvariant cycle with coefficients in the local system on a

complement of hyperplanes in Ck defined by the many-valued function Φ
1/κ
λ .
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Hypergeometric integrals

• The integrals c
λ/µ
I (t) are complicated objects but their sums

cλ/µ(t) =
∑

I∈A(λ/µ) c
λ/µ
I (t) turn out to be much simpler.

Theorem (FSTV 2023)

Let t ′ = t − ρ− wt(λ). Then cλ/µ(t ′) = gλ/µ(x)cλ/λ(t ′), xi = ti+1 − ti . In
particular,

cλ/∅(t ′) =
∏
b∈λ

1

`b(x)
cλ/λ(t ′).

• The hypergeometric integrals cλ/∅ and cλ/λ are the putative enumerative
invariants of X !

λ More precisely,
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Hypergeometric integrals

• The integral cλ/∅(t ′) is (up to a shift of variables) the vertex function. It
simplifies to

Vλ(t ′, κ) =

∫
γ

Φλ(s, t ′)
1
κ

∏ dsi ,j
si ,j

• The (properly normalized) integral cλ/λ(t ′) is the capping operator

Iλ(t ′.κ) =

∫
γ

Φλ(s, t ′)
1
κW∅(s)

∏
dsi ,j .

Thanks for your attention!
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C’est gentil d’être restée jusqu’à la fin du dernier exposé!

Joyeux anniversaire, Michèle!
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